博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Python: Soft_max 分类器
阅读量:5970 次
发布时间:2019-06-19

本文共 2275 字,大约阅读时间需要 7 分钟。

我们能够建立例如以下的loss function:

Li=log(pyi)=logefyijefj

L=1NiLi+12λklW2k,l

以下我们推导loss对W,b的偏导数,我们能够先计算loss对f的偏导数,利用链式法则。我们能够得到:

Lifk=Lipkpkfkpifk=pi(1pk)i=kpifk=pipkikLifk=1pyipyifk=(pk1{
yi=k})

进一步,由f=XW+b,可知fW=XT,fb=1,我们能够得到:

ΔW=LW=1NLiW+λW=1NLippffW+λWΔb=Lb=1NLib=1NLippffbW=WαΔWb=bαΔb

以下是用Python实现的soft max 分类器,基于Python 2.7.9, numpy, matplotlib.

代码来源于斯坦福大学的课程:
基本是照搬过来,通过这个程序有助于了解python的语法。

import numpy as npimport matplotlib.pyplot as pltN = 100  # number of points per classD = 2    # dimensionalityK = 3    # number of classesX = np.zeros((N*K,D))    #data matrix (each row = single example)y = np.zeros(N*K, dtype='uint8')  # class labelsfor j in xrange(K):  ix = range(N*j,N*(j+1))  r = np.linspace(0.0,1,N)            # radius  t = np.linspace(j*4,(j+1)*4,N) + np.random.randn(N)*0.2 # theta  X[ix] = np.c_[r*np.sin(t), r*np.cos(t)]  y[ix] = j# print y# lets visualize the data:plt.scatter(X[:,0], X[:,1], s=40, c=y, alpha=0.5)plt.show()#Train a Linear Classifier# initialize parameters randomlyW = 0.01 * np.random.randn(D,K)b = np.zeros((1,K))# some hyperparametersstep_size = 1e-0reg = 1e-3 # regularization strength# gradient descent loopnum_examples = X.shape[0]for i in xrange(200):  # evaluate class scores, [N x K]  scores = np.dot(X, W) + b   # compute the class probabilities  exp_scores = np.exp(scores)  probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True) # [N x K]  # compute the loss: average cross-entropy loss and regularization  corect_logprobs = -np.log(probs[range(num_examples),y])  data_loss = np.sum(corect_logprobs)/num_examples  reg_loss = 0.5*reg*np.sum(W*W)  loss = data_loss + reg_loss  if i % 10 == 0:    print "iteration %d: loss %f" % (i, loss)  # compute the gradient on scores  dscores = probs  dscores[range(num_examples),y] -= 1  dscores /= num_examples  # backpropate the gradient to the parameters (W,b)  dW = np.dot(X.T, dscores)  db = np.sum(dscores, axis=0, keepdims=True)  dW += reg*W     #regularization gradient  # perform a parameter update  W += -step_size * dW  b += -step_size * db# evaluate training set accuracyscores = np.dot(X, W) + bpredicted_class = np.argmax(scores, axis=1)print 'training accuracy: %.2f' % (np.mean(predicted_class == y))

生成的随机数据

这里写图片描写叙述

执行结果

这里写图片描写叙述

你可能感兴趣的文章
MongoDB的安装和使用
查看>>
fix不抖动ie6
查看>>
SVN提交代码时全选文件
查看>>
Frament填坑
查看>>
Android下 scrollview的滚动停止事件的监听方法
查看>>
数据结构与算法之KMP算法02
查看>>
×××安全协议之IPsec
查看>>
用Unity3D的50个技巧:Unity3D最佳实践
查看>>
记录:C#编程中的字符串
查看>>
NEO从源码分析看NEOVM
查看>>
我的友情链接
查看>>
java中的匿名内部类总结
查看>>
多线程(一、线程安全案例)
查看>>
mysql之DDL操作--数据库
查看>>
java json格式的转换和读取
查看>>
find的命令的使用和文件名的后缀
查看>>
恢复WORD2010的默认模板2011-05-03
查看>>
Test2 unit2
查看>>
shell脚本逻辑判断,文件目录属性判断,if,case用法
查看>>
我的友情链接
查看>>